顶部广告


今日头条
文章附图

  随着天然气在全球的走红,液化天然气(LNG)的应用领域也日渐广泛,如今,LNG甚至带动了造船业的产业革新。  ...

文章附图

   LNG作为一种低排放且相对具有成本效益的未来商用船舶燃料,催生了造船业的开发浪潮。正如同柴油机车迅速取代了...

文章附图

在国务院出台的《中国制造2025》规划中,液化天然气(LNG)船作为高技术船舶被特别点名。为促进我国船舶工业结构调...

文章附图

节能、低碳是未来全球航运业发展的大势所趋。近日,由DNV GL 联合现代重工(HHI), GTT和船东Gaslog...

文章附图

前几年,受益于高油价的推动和环保意识的不断提高,LNG得到热捧和追逐。由此带来整个上下游产业链的快速发展。正所谓,...

新闻详情
LNG动力装置介绍
浏览数:589 

1 LNG混合动力系统

所谓LNG混合动力就是在船舶现有柴油机的基础上,增加一套LNG供气系统和柴油LNG双燃料电控喷射系统,通过电子装换开关,可实现单纯柴油燃料状态下和油气双燃料状态下两种运行模式,将船舶单一的柴油动力改造为柴油LNG双燃料动力,通过采用LNG部分替代柴油燃料,达到节省燃油和降低排放的双重目的。

1.1 LNG混合动力的特点

船舶采用柴油LNG双燃料动力后,柴油的平均替代率达到60%至70%,可实现硫氧化合物减排减排85%~90%,二氧化碳减排15%~20%,同时,噪声污染、烟尘、废油水排放也大大降低。据测算,江苏苏北运河上3万艘船舶经过改造,使用柴油LNG双燃料动力后,每年可减排硫氧化合物3.1万吨,氮氧化合物3.2万吨,二氧化碳37.5万吨。

以柴油为燃料的船舶机舱油污重、噪音大,改装双燃料动力后,油污、烟尘和噪音都大幅下降,船员的工作生活环境得到很大改善。同时,由于装备了智能化的安全监测与处置系统,一旦有可燃气体泄露,就会自动报警,自动切断天然气管路,启动防爆通风机,隔开储罐与舱室和机舱,确保船舶运营安全和船员生命安全。此外,采用LNG燃料,即使船舶发生沉没事故,也不会出现由于使用柴油燃料导致大面积水域污染的现象。

1.2 现有柴油动力到混合LNG混合动力的改装

首先是船体改造。针对试验船船体本身的特点,进行了LNG储罐位于船体尾部的空闲区,设计了一个高度为76厘米的底座。底座与甲板是焊接连接,储罐与底座是螺栓连接。储罐相邻厨房和起居室的一侧都加了一道隔离空仓。储罐顶部是敞开的。气化器占用了部分盥洗室的空间。

其次,船用柴油LNG混燃系统。根据船的空间特点安装连接了船用柴油LNG混燃系统,依次为:LNG储罐、气化器、气体流量计、电动截止阀、不锈钢管路、阻火器、减压稳压阀、喷射阀、柴油机。

第三,安全与消防。在LNG储罐位置安装了2个可燃气体探测器,在机舱内安装了4个可燃气体探测器。在机舱两侧顶部位置安装了两台轴流防爆风机。一旦有可燃气体泄露,浓度达到天然气燃爆点的20%就进行声光报警,并自动启动轴流风机进行强制排风换气。如果浓度达到燃爆点的40%,则自动切断电动截止阀。上述动作过程全部是自动控制。另外在储罐位置和机舱内各摆放了两台干粉灭火器。

最后,电路改造。根据船用发电电压不稳定的特点进行了稳压和电压逆变等设计,确保满足控制系统和轴流风机用电的需要。

1.3 LNG混合动力的推广问题

大量试验和研究表明,柴油LNG双燃料动力技术已经初步具备了推广应用的条件。为迅速把科研成果转化为现实生产力,还需进一步做好以下几个方面的工作。

一是开展加油加气站规划。为满足柴油LNG双燃料动力船舶加油加气的需求,需沿河布置加油加气站,近期首先开展加油加气站布点规划。本着“先大船后小船、先京杭运河后两纵四横干线航道”的原则,初步规划,力争2013年在京杭运河江苏段布置36座加油加气站,逐步形成京杭运河示范效应,力争2015年在江苏两纵四横干线航道上布置不少于100座加油加气站,打造江苏内河绿色水运。

二是研究制定相关技术标准。目前,中国船级社已经完成《气体燃料动力船舶检验指南》(报批稿),江苏蓝色船舶动力有限公司初拟了柴油-LNG双燃料动力系统《操作手册》和《船员安全作业及维护须知》。为顺利实现LNG在运输船舶上的应用及推广,还将进一步研究制定相关技术标准,主要包括两个方面:一是进一步完善规范、标准体系。全力推进《气体燃料动力船舶检验指南》的出台;加快推进改装船厂评估和船舶设施设备产品的认证认可;进一步完善并颁布船员操作指南,开展船员培训和发证工作。二是实现船舶改造技术标准化。进一步优化储罐及管路设计,针对不同类型、不同吨位的船舶,提出不同的设计方案,并制定相关的施工工艺流程,实现设计、施工的规范化和标准化。

三是研究出台相关扶持政策。在试点推广初期,研究出台相关扶持政策,主要包括三个方面:一是资金扶持。研究通过建立专项补助资金、政府贴息、过闸费减免等方式,在推广初期对柴油-LNG双燃料动力改装船舶给予适当资金扶持。二是土地政策支持。在沿河加油加气站点、LNG和燃油储备库等基地的土地征用中给予适当政策支持。三是建立项目工作协调机制。针对加油加气站的布点规划和立项审批、船舶设施设备和船员发证等方面工作,采取集中处理和一站式处理等方式,简化程序。

2 目前应用较多的几种LNG动力装置介绍

LNG船是载运LNG的专用船舶,它在航行的过程中需要充分的利用蒸发的天然气,相对于其他类型的船舶而言,LNG船在LNG动力技术研究上是比较成熟的,这里就以LNG船为例来介绍几种LNG动力装置。

2.1 蒸汽轮机

蒸汽轮机占据今天全球LNG船推进系统的主流,主要原因为:LNG船舶的航速要求一般较高,蒸汽轮机输出功率大,可以满足LNG船对大功率推进系统的要求;同时系统功率裕量较大、可靠性较高,可以满足交货时效性的要求;在蒸汽轮机系统中LNG蒸发汽或重油均可用作锅炉的燃料,也可以采用一定比例混合燃烧方式,LNG蒸发汽可以得到很好的利用;在只燃烧蒸发汽时排出的排放物也较为清洁;维护不是很频繁且费用也相对较低;主锅炉和蒸汽透平结合的主推进系统有效地解决了蒸发汽的安全利用问题;LNG的应用技术在相当长的时期内只被少数几个发达国家所掌握,同时市场长期处于供过于求的状态,LNG价格较低,蒸汽轮机系统的整体经济性较好。而其他主推进系统方案相对地都或多或少存在一些技术瓶颈,成了作为LNG船主推进系统的障碍。经过几十年的发展,蒸汽轮机系统在某种程度上说已成为LNG船的标准主动力系统。

蒸汽轮机推进系统主要由锅炉、蒸汽轮机和齿轮减速传动装置组成。其工作原理是锅炉产生的蒸汽通过蒸汽涡轮机将热能和压力势能转换成动能驱动涡轮转子转动,经减速装置减速后带动螺旋桨转动,从而推动船舶前进。锅炉配备货物LNG蒸发气和燃油两套燃料供给系统。锅炉可以单独燃烧蒸发气或燃油,也可以两种燃料同时使用。

蒸汽轮机保养费用相对较低,维修频次少,应用记录表明系统具有很高的可靠性。蒸发汽获取量取决于船舶设计及其工作环境条件,通常自然蒸发率设计为0.15%左右,有些正在营运的船舶蒸发率可低到0.10%左右。在压载航行时,可得到的蒸发汽量只有满载航行时的10~50%,具体比例取决于货舱留有用于预冷液货的量、海况和货舱温度的控制等综合因素。对LNG船来说,不管选择何种推进系统,都必须采取某种方式来处理蒸发汽,把它用作推进系统的燃料或进行再液化。LNG蒸发汽在空气中爆炸浓度范围是5~14%,释放到大气不但不经济而且非常危险。LNG是在常压下运输的,通常液货舱安全阀设定压力为25KPa,真空压力设定为低于大气压1KPa,航行时要避免货舱超压或出现负压。

安全在天然气运输中是极其重要的,蒸汽轮机主推进系统的可靠性、严格的安全操作规程以及成熟的系统设计使得LNG船有极好的安全记录。迄今为止,除发生过个别型号蒸汽轮机齿轮箱过度磨损事故外,并无其他重大机损事故报告。LNG船造价高昂,延长船舶使用寿命是降低船舶营运成本的重要措施之一。与其他船舶一样,LNG船使用寿命很大程度上取决于船体、货舱和主推进装置的服务寿命。船体、货舱和主推进系统的维护管理是LNG船舶管理的重要环节。根据日本船级社1992年的技术简报《对防范非自持式液化气船舶事故的反思》,通过对29艘非自持式液化气船舶的事故调查分析““,其结果表明液化气运输船舶的安全系数很高,货舱发生液化气泄漏的危险性很低。

蒸汽轮机推进系统的主要缺点是:蒸汽轮机系统的燃油消耗率比低速柴油机高,系统整体热效率低,燃料消耗量大。
     只有当蒸发汽的价格与燃油的价格相比

足够低时,此种方案的推进系统在营运的经济性方面才有一定的优势,越过了某一价格的临界点,系统的经济性差的问题便凸显出来了。

2.2 燃气轮机

在LNG船上采用燃气轮机推进装置,可采用机械式或电力式。燃气轮机重量较轻,无振动、并且可以使用双燃料(使用重油作为备用燃料)。它的低效率某种程度上可通过联合循环系统来弥补。然而,燃气轮机对电站和气体压力的要求较高,这会使安装更复杂,费用更为昂贵。

罗尔斯—罗伊斯燃气轮机公司,于2002年初推出了供LNG船选用的Trent30型燃气轮机。该机输出功率达36MW,且重量较轻,不到26吨。与蒸汽轮机相比,这种燃气轮机在整个使用期间可以节约营运成本2096左右。如选用Trent30型燃气轮机作LNG船主机,船的总长可缩短19米,而载重量却可增加12%,这对提高船舶经济效益至关重要。Trent30型燃气轮机具有模块化结构等特性,可维修性好,这己成为用户选用船舶主机的重要条件之一。

阿尔斯通公司和通用动力公司也准备为LNG船提供燃气轮机。他们认为,LNG船采用燃气轮机推进可以节省很大的舱内空间和减轻主机重量。阿尔斯通公司已向LNG船市场推出了输出功率达17兆瓦的GT35型燃气轮机。该机是能使用柴油和天然气混合燃料的双燃料发动机,柴油和天然气的混合比为2:8。目前船东对这种燃气轮机很感兴趣。通用动力公司生产的LM2500型和LM6000型燃气轮机也适合于LNG船,这两型燃气轮机具有可靠性高、重量轻、单位重量的功率很大等特点。为了满足对LNG船冗余度方面的要求,可在一艘LNG船上可安装两台燃气轮机或采用燃气轮机加余热锅炉或采用燃气轮机与柴油机联合动力装置。

复合涡轮机组(即燃气轮机发动机十蒸汽轮机发动机),是在用燃气轮机燃烧蒸发汽的同时,利用废气能量产生蒸汽,驱动蒸汽轮机。这种发动机的燃料效率较一般的蒸汽轮机好,而且排放的废气与汽轮发动机相同,是比较清洁的。缺点是需要高质量的石油燃料,并且不能与蒸发汽混合燃烧。将来还可能考虑与电力推进装置相结合。从环保因素考虑将来有可能会采用此种方案的推进系统。

2.3 双燃料电力推进

该种推进方式采用双燃料发电机组产生电能,供给船舶推进电动机组,经减速装置减速后驱动螺旋浆转动。在建船舶中,己有LNG船采用此种推进方式,根据其配置的不同有多种型式可供选择。

由于双燃料发动机可使用低压气体,在发动机入口处压力在4bar至5bar之间,其压缩机组与目前使用蒸汽轮机推进装置的船舶基本相同。基于双燃料发动机的电力推进装置的总效率高于40%,与蒸汽推进装置的30%或者更低相比要好得多。至于选择单桨还是双桨,将基于航线情况及不同的冗余要求而定。发动机的数目及输出功率将由所需的轴功率及冗余度决定。通常来说,一艘13.5万立方米的LNG船所需功率大约为30唧,可由4台50DF发动机组组成,其MCR输出功率为950千瓦/缸,热效率高达46.5%“1。在转速为500rpm(50Hz)或514rpm(60Hz),热效率可达48%,推荐的装置为8缸机或9缸机。多台机使系统具有良好的冗余特性,同时也具有良好的机动性,适应不同的运营模式要求,如机动操纵、在港口等待、装载及卸货等。在海上和港口中可进行灵活的预防性维护,这对蒸汽装置或者说大型二冲程发动机都是不可能的。

近年来的研究表明,最有利的方案就是使用强制蒸发汽以代替燃油。这种推进方式冗余度高,操作灵活,可以保证LNG船具有较高的可靠性;提高了热效率,具有低排放的特性。
    2.4 双燃料推进系统

双燃料发动机(燃油和蒸发气)的发展己经使有效利用蒸发气成为可能,双燃料发动机是从重油柴油机发展而来。因此双燃料发动机推进装置也是现代LNG船一个具有强有力竞争力的选择。

双燃料发动机是一种经过特殊改造的可直接燃烧LNG蒸发汽和燃油的内燃机,有高压型和低压型两种。高压型双燃料内燃机在喷射少量的点火柴油后,即可将船上蒸发的LNG气体高压喷射进入燃烧室燃烧;低压型双燃料柴油机可将船上蒸发的LNG气体以较低的压力(约4bar/cm2)喷射进入燃烧室,在轻油点火下燃烧。前者使用高压LNG管路有泄漏的危险,后者则需要额外配置点火装置。据有关资料,在挪威近海项目中,在小型LNG船上推进系统有直接采用了双燃料发动机作为主推进装置,但此系统需要和蒸发汽氧化装置配套使用。

当前,天然气一柴油双燃料二冲程和四冲程发动机己经面市,使双燃料发动机作为液化天然气(LNG)船推进主机的构想变为现实。瓦锡兰50DF型柴油机就是一种以天然气和柴油作为燃料的双燃料发动机。在正常工作时,仅使用9%的天然气和1%的燃油混合燃料,只有在天然气系统出现故障时,才切换到燃油状态。在预燃室中喷入燃油启动发动机。

与常规动力装置相比,使用这种双燃料发动机不但最大限度地利用了蒸发汽燃料,而且大大降低了燃油的消耗和运营成本,可节约燃料20%~30%,提高发动机的效率。在一艘13.5万立方米LNG船上,MAN B&W柴油机公司对烧重油的蒸汽轮机与烧重油和天然气的双燃料发动机进行了比较,

后者每年可为船东节约

250万美元左右的费用。同时,双燃料发动机具有很低的排放,其氮氧化物的排放量只相当于普通柴油机的1/10,二氧化碳的排放也相当低。由于双燃料发动机可以在气体燃料和液体燃料两种模式下交替工作,而且两种模式是自动切换,在停止气体燃料供应时,发动机不会停止运行,而是自动切换到液体燃料模式。随着船舶动力装置的不断发展,双燃料发动机以其可使用两种燃料、重量轻、制造成本较低等优点将成为今后LNG船主推进装置的一个重要选择。

瓦锡兰双燃料发动机配有精确的电子控制设备,将布置在柴油机各位置上的传感器联系在一起,对各种参数如负载、转速、燃烧特性、废气排放温度等进行监控,控制系统对输入的信号与系统设定的数值进行分析比较,立即对天然气供气压力、供气量、供气正时和空燃比进行调整,以满足负荷要求或其它工作条件,如避免敲缸和熄火。因此当气体质量,周围环境温度变化时,所有的缸在任何条件下都有最佳的性能。

LNG货物蒸汽对瓦锡兰6L50DF发动机是一个很好的燃料,唯一需要考虑的是气体组成的变化,即氮气在蒸发汽中的含量。通常,氮对发动机不是有害的,发动机吸入的空气中氮含量就高达78%,不过,因为它是惰性气体,对燃烧没有贡献,蒸发汽的能量(热值)比纯甲烷低。LNG蒸发汽中氮的含量可能会高达蒸发汽体积的30%,尤其是在航程开始时。这对瓦锡兰6L50DF发动机来说不是一个问题,控制系统会很好地调节功率输出,平抑波动。瓦锡兰双燃料发动机的热效率可达46.5%,它在陆地上累计己有相当数量的运行时间,对用于海上来说己趋于成熟。换句话说,一切都己准备好,是其向LNG船主推进装置进军的时候了。

2.5 小结

在上述LNG船不同类型推进系统的可能的方案中很难判定哪个方案就是未来LNG船推进系统的最佳选择因为仍有许多不确定的因素除了技术发展因素外诸如天然气和船舶主机用重油价格的预测和波动船的尺寸大小航行速度和参与预定贸易的LNG船的数量等。